Multivariable Time Series (MTS) Forecasting
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Research questions:

1. How to leverage information in exogenous indicators?

2. Are there alternatives to the attention mechanism for MTS?
3. What datasets should be used for MTS Forecasting?

4. Sequence or target forecasting horizon error?

1. Sonnet Model Step-by Step

1.1 Embedding covariates
Embedding exo- and endo-genous variables:

Final embedding: E= [E, ,E,| € RLxd

1.2 Learnable Wavelet Transform
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Learnable wavelets: My =exp (—wot?) x cos (wgt+w,t%)
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features at different scale.

1.3 Multivariable Coherence Attention (MVCA)

Variable-wise FFT:

Power-spectral densities:

Spectral coherence:
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1.4 Koopman-Guided Spectrum Evolvement
Complex form of the output from MVCA: Q€ CHxLxd

Apply Koopman Operator:

Turns a nonlinear system into a linear one:

1.5 Sequence reconstruction and decode
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2. Results Overview — Sonnet
Radar plots w.r.t. different forecasting horizons:
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5. Back to our questions ...

3. Results Overview — MVCA

Replacing the Attention module with different modifications to naive attention

Here we show results using PatchTST][1] on the ILI forecasting task in US Region 9
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4. Visualisation over the entire test set

—— Forecasts
—— Ground truth

14 days ahead forecasting in England (ILI-ENG)
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About the datasets

1. Exogenous variables should be predictive of the target
Check for - Lead lag, Mutual Information, etc.

2. Dataset should cover a long enough time span

To capture seasonality & ensure generalisablility.

We formed a weather dataset (1979-2018) from
WeatherBench for multivariable forecasting - Check it out!

About evaluation
1. Forecasting becomes more difficult as
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0 Errors should be evaluated both over the
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