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Replacing the Attention module with different modifications to naïve attention 

These are denoted by Ex 2RL⇥↵d and Ey 2RL⇥(1�↵)d.
They are derived using learnable weight matrices Wx 2
RC⇥↵d and Wy 2R1⇥(1�↵)d, as in Ex =XWx, where d

is the embedding dimension and ↵2 [0,1] a hyperparameter
that controls the projected dimensionality of X and y in the
final embedding.1 By concatenating along the feature dimen-
sion, we obtain the final embedding E=[Ex,Ey]2RL⇥d.

3.2 Learnable wavelet transform
We then transform the time series embedding into the wavelet
space that contains both time and frequency information, to
capture both fine-grained details and overall trends across
various temporal resolutions (Mallat 1989; Daubechies 1990).
Specifically, after obtaining the input time series embedding
E, we first define a set of K learnable wavelet transforma-
tions (also referred to as atoms), with the k-th atom held in a
matrix Mk 2Rd⇥L derived by
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where t2RL is a row vector capturing normalised time
steps with ti = i/(L�1) for i=0, . . . ,L�1, and w↵, w� ,
and w� 2Rd are learnable weight vectors that control the
shape of the wavelet, each initialised randomly from a nor-
mal distribution. In particular, w↵ controls the width of the
Gaussian envelope, and w� , w� respectively determine the
linear or quadratic frequency modulation of the generated
cosine waveforms. This formulation enables the atoms to
adapt to localised time-frequency structures in the data. The
time series embedding E2RL⇥d is then transformed into
the wavelet space by projecting it onto each of the wavelet
atoms Mk 2Rd⇥L using Pk=E�M

>
k

, where Pk 2RL⇥d

denotes the embedding’s projection for the k-th atom, and
� is element-wise multiplication. The transformed wavelet
across all K atoms is denoted by P2RK⇥L⇥d. The afore-
mentioned steps help to preserve temporal structure while
decomposing the input into multi-resolution time-frequency
components using adaptive wavelet transforms that can cap-
ture both short- and long-term patterns in the data.

3.3 Multivariable Coherence Attention (MVCA)
In MTS forecasting, input variables can be both auto-
correlated (to their own past values) and cross-correlated
(to each other). To improve learning from these correlations,
we propose MVCA, a module that supplements the standard
attention. MVCA can capture inter- and intra-variable depen-
dencies within the frequency domain using spectral density
coherence. Its premise is that variables with a higher spec-
tral coherence should contribute more to the attention output.
MVCA can be used in place of any naı̈ve attention module
used in a forecasting method.

Given the obtained input embedding matrix in wavelet
space P2RK⇥L⇥d, where L and d are the time and variable
dimension, K is the number of wavelets after transformation,

1We make sure that both products ↵d and (1�↵)d2N to avoid
dimension mismatch caused by rounding. For ↵=0, the forecasting
is based on the historical values of the target variable only, collapsing
to an autoregressive setting. For ↵=1, forecasting depends entirely
on the exogenous variables.

we first linearly project it to query, key and value embeddings,
denoted as Q, K, and V2RK⇥L⇥d, using weight matrices
Wq, Wk, and Wv 2Rd⇥d respectively, as in Q=PWq.
We then consider the embeddings from different wavelet
transformations (indexed by k) as separate attention heads.
Specifically, for each attention head, we obtain the sub-tensor
of Q, K, and V, denoted as Qh, Kh, and Vh 2RL⇥d, as
the query, key, and value embeddings. Therefore, each head
captures a distinct subspace of the original embedding, where
subspaces correspond to different wavelet transformations
of the input. Including a multi-head structure enables the
model to learn diverse dependencies in parallel (Vaswani
et al. 2017).

We then apply a Fast Fourier Transform (FFT) along
the variable dimension (Dudgeon and Mersereau 1984) of
each transformer head to transfer the query and key embed-
dings to the frequency domain, i.e. Qf =FFT(Qh) and
Kf =FFT(Kh), with both Qf and Kf 2CL⇥`, where
`= bd

2c+1. Each frequency bin in the transformed data
(Qf , Kf ) contains information from all original inputs to
the FFT (Lee-Thorp et al. 2022), capturing both fine-grained
(high-frequency) and global (low-frequency) patterns. The
cross-spectral density Pqk 2 CL⇥` and power-spectral densi-
ties Pqq , Pkk 2 RL⇥` are obtained as follows:

Pqk=Qf �K
⇤
f
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⇤
f
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⇤
f
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where ‘⇤’ denotes the complex conjugate. We average along
the second dimension to obtain Pqk 2CL, Pqq, and Pkk 2
RL (see also Appendix B). The normalised spectral coher-
ence Cqk 2RL is then computed using

Cqk= |Pqk|2/
�
Pqq ·Pkk+✏

�
, (3)

where ✏=10�6 mitigates division by 0. Cqk captures the lin-
ear dependency between sequences across frequency bands.
Therefore, the coherence here assigns higher importance to
the time steps where the query and key hold more similar
averaged values across multiple frequencies.

Following the common design of attention layers (Vaswani
et al. 2017), we scale, normalise, and regularise Cqk, i.e.
Ah=Dropout(Softmax(Cqk/

p
d)). The attention weights

Ah 2RL of each head are first broadcast along the fea-
ture dimension to form A2RL⇥d, which is then multiplied
with the value representations Vh (element-wise) to produce
head-specific outputs, Oh 2RL⇥d =A�Vh. We concate-
nate these outputs across all heads to obtain Or 2RK⇥L⇥d.
We then use a 2-layer perceptron (MLP, d-dimensional lay-
ers) with Gaussian Error Linear Unit (GELU) activation to
further capture nonlinearities. This is connected to a residual
layer to form the output Om2RK⇥L⇥d=Or+MLP(Or).
We then multiply Om with a weight matrix Wout 2Rd⇥d to
obtain the output of MVCA, O2RK⇥L⇥d=OmWout.

3.4 Koopman-guided spectrum evolvement
Motivated by Koopman operator theory (Mezić 2005; Rowley
et al. 2009; Avila and Mezić 2020), which offers a framework
for modelling nonlinear dynamics, we introduce a layer to
capture the temporal evolution of time-frequency patterns in
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final embedding.1 By concatenating along the feature dimen-
sion, we obtain the final embedding E=[Ex,Ey]2RL⇥d.

3.2 Learnable wavelet transform
We then transform the time series embedding into the wavelet
space that contains both time and frequency information, to
capture both fine-grained details and overall trends across
various temporal resolutions (Mallat 1989; Daubechies 1990).
Specifically, after obtaining the input time series embedding
E, we first define a set of K learnable wavelet transforma-
tions (also referred to as atoms), with the k-th atom held in a
matrix Mk 2Rd⇥L derived by
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where t2RL is a row vector capturing normalised time
steps with ti = i/(L�1) for i=0, . . . ,L�1, and w↵, w� ,
and w� 2Rd are learnable weight vectors that control the
shape of the wavelet, each initialised randomly from a nor-
mal distribution. In particular, w↵ controls the width of the
Gaussian envelope, and w� , w� respectively determine the
linear or quadratic frequency modulation of the generated
cosine waveforms. This formulation enables the atoms to
adapt to localised time-frequency structures in the data. The
time series embedding E2RL⇥d is then transformed into
the wavelet space by projecting it onto each of the wavelet
atoms Mk 2Rd⇥L using Pk=E�M

>
k

, where Pk 2RL⇥d

denotes the embedding’s projection for the k-th atom, and
� is element-wise multiplication. The transformed wavelet
across all K atoms is denoted by P2RK⇥L⇥d. The afore-
mentioned steps help to preserve temporal structure while
decomposing the input into multi-resolution time-frequency
components using adaptive wavelet transforms that can cap-
ture both short- and long-term patterns in the data.

3.3 Multivariable Coherence Attention (MVCA)
In MTS forecasting, input variables can be both auto-
correlated (to their own past values) and cross-correlated
(to each other). To improve learning from these correlations,
we propose MVCA, a module that supplements the standard
attention. MVCA can capture inter- and intra-variable depen-
dencies within the frequency domain using spectral density
coherence. Its premise is that variables with a higher spec-
tral coherence should contribute more to the attention output.
MVCA can be used in place of any naı̈ve attention module
used in a forecasting method.

Given the obtained input embedding matrix in wavelet
space P2RK⇥L⇥d, where L and d are the time and variable
dimension, K is the number of wavelets after transformation,

1We make sure that both products ↵d and (1�↵)d2N to avoid
dimension mismatch caused by rounding. For ↵=0, the forecasting
is based on the historical values of the target variable only, collapsing
to an autoregressive setting. For ↵=1, forecasting depends entirely
on the exogenous variables.

we first linearly project it to query, key and value embeddings,
denoted as Q, K, and V2RK⇥L⇥d, using weight matrices
Wq, Wk, and Wv 2Rd⇥d respectively, as in Q=PWq.
We then consider the embeddings from different wavelet
transformations (indexed by k) as separate attention heads.
Specifically, for each attention head, we obtain the sub-tensor
of Q, K, and V, denoted as Qh, Kh, and Vh 2RL⇥d, as
the query, key, and value embeddings. Therefore, each head
captures a distinct subspace of the original embedding, where
subspaces correspond to different wavelet transformations
of the input. Including a multi-head structure enables the
model to learn diverse dependencies in parallel (Vaswani
et al. 2017).

We then apply a Fast Fourier Transform (FFT) along
the variable dimension (Dudgeon and Mersereau 1984) of
each transformer head to transfer the query and key embed-
dings to the frequency domain, i.e. Qf =FFT(Qh) and
Kf =FFT(Kh), with both Qf and Kf 2CL⇥`, where
`= bd

2c+1. Each frequency bin in the transformed data
(Qf , Kf ) contains information from all original inputs to
the FFT (Lee-Thorp et al. 2022), capturing both fine-grained
(high-frequency) and global (low-frequency) patterns. The
cross-spectral density Pqk 2 CL⇥` and power-spectral densi-
ties Pqq , Pkk 2 RL⇥` are obtained as follows:
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where ‘⇤’ denotes the complex conjugate. We average along
the second dimension to obtain Pqk 2CL, Pqq, and Pkk 2
RL (see also Appendix B). The normalised spectral coher-
ence Cqk 2RL is then computed using
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where ✏=10�6 mitigates division by 0. Cqk captures the lin-
ear dependency between sequences across frequency bands.
Therefore, the coherence here assigns higher importance to
the time steps where the query and key hold more similar
averaged values across multiple frequencies.

Following the common design of attention layers (Vaswani
et al. 2017), we scale, normalise, and regularise Cqk, i.e.
Ah=Dropout(Softmax(Cqk/

p
d)). The attention weights

Ah 2RL of each head are first broadcast along the fea-
ture dimension to form A2RL⇥d, which is then multiplied
with the value representations Vh (element-wise) to produce
head-specific outputs, Oh 2RL⇥d =A�Vh. We concate-
nate these outputs across all heads to obtain Or 2RK⇥L⇥d.
We then use a 2-layer perceptron (MLP, d-dimensional lay-
ers) with Gaussian Error Linear Unit (GELU) activation to
further capture nonlinearities. This is connected to a residual
layer to form the output Om2RK⇥L⇥d=Or+MLP(Or).
We then multiply Om with a weight matrix Wout 2Rd⇥d to
obtain the output of MVCA, O2RK⇥L⇥d=OmWout.

3.4 Koopman-guided spectrum evolvement
Motivated by Koopman operator theory (Mezić 2005; Rowley
et al. 2009; Avila and Mezić 2020), which offers a framework
for modelling nonlinear dynamics, we introduce a layer to
capture the temporal evolution of time-frequency patterns in
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ers) with Gaussian Error Linear Unit (GELU) activation to
further capture nonlinearities. This is connected to a residual
layer to form the output Om2RK⇥L⇥d=Or+MLP(Or).
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obtain the output of MVCA, O2RK⇥L⇥d=OmWout.

3.4 Koopman-guided spectrum evolvement
Motivated by Koopman operator theory (Mezić 2005; Rowley
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for modelling nonlinear dynamics, we introduce a layer to
capture the temporal evolution of time-frequency patterns in
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module. DeformTime (Shu and Lampos 2025) yields su-
perior results by using deformable attention to incorporate
information from exogenous variables at different time steps.
However, it only captures inter-variable dependencies within
the reception field of a convolutional kernel, which limits the
exploration of a wider range of exogenous variables.

Frequency-based analysis techniques, including those us-
ing Fourier (Bochner 1953; Sorensen et al. 1987) or wavelet
transform (Varanini et al. 1997; Zhang et al. 2003; Arneodo,
Grasseau, and Holschneider 1988; Farge et al. 1992; Yu,
Guo, and Sano 2024), has been widely used in statistical ap-
proaches for identifying periodic patterns (Priestley 2018) as
well as in machine learning methods for forecasting (Lange,
Brunton, and Kutz 2021; Zhou et al. 2022a,b; Piao et al.
2024). These methods compress temporal information (due
to the Fourier transform) while some of them focus on cap-
turing intra-variable dependencies (Zhou et al. 2022a,b).
Wavelet transform, albeit dependent on the chosen mother
wavelet (De Moortel, Munday, and Hood 2004; Ngui et al.
2013), can maintain both time and frequency information.
In the frequency domain, spectral coherence (White and
Boashash 1990) serves as a powerful tool for capturing the
correlation between variables at different frequencies (Stein,
French, and Holden 1972; Mima and Hallett 1999). To im-
prove input projections into the frequency domain, Lange,
Brunton, and Kutz (2021) used a Koopman operator (Mezić
2005; Rowley et al. 2009; Avila and Mezić 2020; Liu et al.
2023), i.e. a spectral function that enables linear modelling of
nonlinear changes to better address nonlinearities. More re-
cently, AdaWaveNet (Yu, Guo, and Sano 2024) decomposed
the input series into seasonal and long-term components, and
used the wavelet transform to capture periodic information.
This method accounts for inter-variable dependencies only
over the seasonal components.

Motivated by the aforementioned remarks, we propose
Spectral Operator Neural Network (Sonnet), a model that
captures MTS dependencies in the spectral domain using a
learnable wavelet transform. Sonnet captures both intra- and
inter-variable dependencies using a novel frequency-domain
Multivariable Coherence Attention (MVCA) layer. Further-
more, it deploys a learnable Koopman operator for linearised
transitions of temporal states (Li et al. 2020). MVCA demon-
strates stand-alone effectiveness when integrated into existing
architectures, outperforming naı̈ve attention and other modi-
fied attention mechanisms. Our key contributions are:
1. We propose Sonnet, a novel neural network architecture

for MTS forecasting that captures inter-variable dependen-
cies via adaptable time-frequency spectral operators while
enforcing stability through learnable Koopman dynamics.

2. We introduce MVCA, an attention mechanism designed
to model interactions between variables by leveraging
their spectral coherence, a frequency-domain measure-
ment of dependency. Unlike conventional self-attention,
which computes pairwise similarity via dot products,
MVCA captures temporal relationships through their
cross-spectral density with the inclusion of frequency in-
formation from all variables, enhancing variable depen-
dency modelling for MTS tasks.

3. We assess forecasting accuracy on carefully curated

MTS data sets, including established benchmarks comple-
mented by tasks on weather forecasting, influenza preva-
lence, electricity consumption, and energy prices. The
weather prediction and influenza prevalence tasks support
a more thorough evaluation as they include a substantial
amount of exogenous variables, multiple years (�10) for
training, and multiple test periods (�3).

4. Sonnet reduces mean absolute error (MAE) by 2.2% on
average compared to the most performant baseline model
(stat. sig., p<10�3). In the more challenging tasks of in-
fluenza and weather modelling, MAE is reduced by 3.5%
and 2%, respectively. Performance gains persist as the
forecasting horizon increases, demonstrating the effective-
ness of Sonnet in longer-term forecasting.

2 MTS forecasting task definition
We focus exclusively on multivariable time series (MTS)
forecasting, whereby multiple input variables are used to pre-
dict a single target variable. We note that although for some
baseline models multiple output variables may be present
(multivariate forecasting), our evaluation is restricted to the
prediction of one specific output. All models are trained and
evaluated under a rolling window setup, with a look-back win-
dow and a forecasting horizon of L and H time steps, respec-
tively. At each time step t, the C observed exogenous vari-
ables over L past time steps, {t�L+1, . . . ,t}, are captured
in an input matrix Xt2RL⇥C . The autoregressive signal for
the target (endogenous) variable is denoted by yt�� 2RL;
this encompasses time steps {t���L+1, . . . ,t��}, where
�2N0 is an optional delay applied when the target variable is
observed with a temporal lag. We capture the exogenous and
endogenous input variables in Zt=[Xt,yt��]2RL⇥(C+1).
The goal is to predict the target variable at time step t+H ,
where H denotes the forecasting horizon. Hence, the out-
put of a forecasting model is denoted by yt+H 2RH and
holds forecasts for time steps {t+1, . . . , t+H�1, t+H}.
For models that conduct multivariate forecasting, the output
includes predictions for all covariates and hence is denoted by
Yt+H =[Xt+H ,yt+H ]2RH⇥(C+1). The forecasting task is
to learn f :Zt!yt+H or Yt+H . Performance is measured
based on the endogenous forecast at time step t+H , i.e. the
last (temporally) element of yt+H , yt+H 2R. For notational
simplicity, we omit temporal subscripts and use Z for Zt, y
for yt�� , and X for Xt.

3 Spectral coherence with Sonnet
In this section, we provide a detailed description of our pro-
posed model, Sonnet. It operates in the spectral domain via a
learnable wavelet transform and introduces a Multivariable
Coherence Attention (MVCA) module to capture both inter-
and intra-variable dependencies. We further use a Koopman
projection layer that enables stable temporal evolution via a
learned linear operator.

3.1 Joint embedding of exo/endo-genous variables
Given an input matrix Z2RL⇥(C+1) that consists of the ex-
ogenous variables X2RL⇥C and endogenous variable y2
RL, we first obtain the embeddings of X and y independently.
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prediction of one specific output. All models are trained and
evaluated under a rolling window setup, with a look-back win-
dow and a forecasting horizon of L and H time steps, respec-
tively. At each time step t, the C observed exogenous vari-
ables over L past time steps, {t�L+1, . . . ,t}, are captured
in an input matrix Xt2RL⇥C . The autoregressive signal for
the target (endogenous) variable is denoted by yt�� 2RL;
this encompasses time steps {t���L+1, . . . ,t��}, where
�2N0 is an optional delay applied when the target variable is
observed with a temporal lag. We capture the exogenous and
endogenous input variables in Zt=[Xt,yt��]2RL⇥(C+1).
The goal is to predict the target variable at time step t+H ,
where H denotes the forecasting horizon. Hence, the out-
put of a forecasting model is denoted by yt+H 2RH and
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Yt+H =[Xt+H ,yt+H ]2RH⇥(C+1). The forecasting task is
to learn f :Zt!yt+H or Yt+H . Performance is measured
based on the endogenous forecast at time step t+H , i.e. the
last (temporally) element of yt+H , yt+H 2R. For notational
simplicity, we omit temporal subscripts and use Z for Zt, y
for yt�� , and X for Xt.

3 Spectral coherence with Sonnet
In this section, we provide a detailed description of our pro-
posed model, Sonnet. It operates in the spectral domain via a
learnable wavelet transform and introduces a Multivariable
Coherence Attention (MVCA) module to capture both inter-
and intra-variable dependencies. We further use a Koopman
projection layer that enables stable temporal evolution via a
learned linear operator.

3.1 Joint embedding of exo/endo-genous variables
Given an input matrix Z2RL⇥(C+1) that consists of the ex-
ogenous variables X2RL⇥C and endogenous variable y2
RL, we first obtain the embeddings of X and y independently.

wavelet space. We aim to learn a Koopman operator with K

dimensions in the transformed space. To obtain the operator
K2CK⇥K , we first initialise a learnable complex-valued
matrix S2CK⇥K . At each forward pass, we apply QR de-
composition to S, and retain only the resulting unitary matrix
U2CK⇥K , i.e. U QR(S) s.t. U†

U= I, where U
† is

the conjugate transpose of U. Multiplying with U therefore
prevents data amplification or distortion.

We then initialise a learnable vector p2RK , where the
k-th element, pk, controls the temporal evolution (phase trans-
formation angle) of the k-th transformation. All elements in
the vector are then mapped into complex numbers, obtain-
ing v2CK , where vk = e

ipk . We use v to form a diagonal
matrix D2CK⇥K =diag(v). The Koopman operator, K, is
then given by K=UDU

†. We use K to model the temporal
evolution of the MVCA embedding, O, after converting it to
a complex form, Oc2CK⇥L⇥d (the imaginary part is set to
i0 to perform complex-valued transformations without alter-
ing the original embedding), given by Ol=K⇥Oc, where
Ol2CK⇥L⇥d is the evolved embedding after multiplication
with K. A conventional Koopman framework models tempo-
ral evolution recursively at each time step (Lusch, Kutz, and
Brunton 2018; Avila and Mezić 2020). We instead choose to
apply Koopman transformation in the frequency domain with
one forward pass, which is equivalent to learning a direct
transformation from the input to the output. This global pro-
jection reduces the accumulation of sequential errors while
maintaining robustness in training.

3.5 Sequence reconstruction from wavelets
The inverse transformation reconstructs the original sequence
by aggregating weights from each wavelet atom. Given the
evolved state Ol, we first obtain its real part denoted as
Or 2RK⇥L⇥d. For each wavelet atom indexed by k, let
Ok 2RL⇥d denote the corresponding slice of Or. We then
multiply it with the wavelet atom Mk 2Rd⇥L, i.e. Rk =
Ok�M>

k
. Rk2RL⇥d denotes the series reconstruction from

the k-th atom. This operation is conducted over all K atoms.
Joining all the reconstructed series forms a K⇥L⇥d matrix.
We sum over its first dimension to obtain the reconstructed
embedding, denoted as R2RL⇥d.

3.6 Convolutional decoder
Finally, a 3-layer convolutional decoder transforms the
learned representation. It comprises 3 1-dimensional convolu-
tional layers with GELU activations between every 2 layers.
Each layer uses kernel sizes [5,3,3] and paddings [2,1,1]
respectively, followed by an adaptive average pooling layer
at the end. The dimension of each layer is [H⇥4, H⇥2, H],
producing the final sequence representation Zout 2RH⇥H ,
in accordance with the time steps of the target forecast-
ing horizon. The result is then linearly projected using a
weight vector Wz 2RH to generate the final output, as in
ŷ2RH =ZoutWz , in accordance with the dimensionality of
the target variable.

4 Results
We assess forecasting accuracy using an expanded collection
of data sets and tasks, to overcome potential biases present in

the current literature. We first compare Sonnet against other
competitive baseline models. We then investigate the role of
attention mechanisms in time series forecasting models by re-
moving or replacing naı̈ve transformers with more advanced
variants, including the proposed MVCA module. We also
provide an ablation study of the key components of Sonnet
and seed control in Appendix E.

4.1 Experiment settings
We conduct experiments over 12 real-world data sets. This
includes 2 established benchmarks from prior papers (Zhou
et al. 2021; Zeng et al. 2023), specifically the ETTh1 and
ETTh2 data sets, which contain hourly electricity transformer
temperature forecasting. Oil temperature is our target vari-
able, with the remaining indicators considered as exogenous
variables, following Wang et al. (2024b). We also use 2 data
sets from the Darts library (Herzen et al. 2022), predicting
hourly energy prices (ENER) and electricity (low-voltage)
consumption (ELEC). In addition, we form weather data
sets extracted from the WeatherBench repository (Rasp et al.
2020) for 5 cities from diverse geographical locations, namely
London (WEA-LD), New York (WEA-NY), Hong Kong
(WEA-HK), Cape Town (WEA-CT), and Singapore (WEA-
SG), to support a more inclusive analysis. For each city, we
sample data from its nearest grid point and obtain 5 climate
indicators. We provide spatial context by including data from
its eight surrounding grid points (3⇥3 grid) as additional
exogenous variables. Following prior work on global climate
forecasting (Verma, Heinonen, and Garg 2024), we resample
the data to a temporal resolution of 6 hours. The forecasting
target is the 850 hPa (T850) temperature, a key indicator for
climate modelling (Scherrer et al. 2004; Hamill and Whitaker
2007). Finally, we include influenza-like illness (ILI) rate
forecasting tasks (as in (Shu and Lampos 2025)) in 3 lo-
cations, England (ILI-ENG), and in U.S. Health & Human
Services (HHS) Regions 2 (ILI-US2) and 9 (ILI-US9). In the
ILI tasks, frequency time series of web searches are included
as exogenous predictors. More information about the data
sets is provided in Appendix A.

For the ETT tasks, we set the forecasting horizon (H) to
{96,192,336,720} time steps, and use a single test set of
consecutive unseen instances adopting the evaluation settings
in prior work (Nie et al. 2023; Liu et al. 2024). For ENER we
set H={24,48,72,168} hours ahead and use 1 year (2018)
for testing. For ELEC, we use the last 2 years (2020, ’21)
as 2 distinct test seasons, and set H to {12,24,36} hours.
For the WEA tasks, we form 3 test sets (years 2016, ’17,
’18), and set H to {4,12,28,120} time steps corresponding
to {1,3,7,30} days. Following the same setup as in (Shu and
Lampos 2025), for the ILI forecasting task, we test models on
4 consecutive influenza seasons (2015/16 to 2018/19), each
time training a new model on data from previous seasons. We
set H={7,14,21,28} days (more details in Appendix D).

We compare Sonnet to 8 competitive forecasting models
that, to the best of our knowledge, form the current SOTA
methods: DLinear (Zeng et al. 2023), Crossformer (Zhang
and Yan 2023), iTransformer (Liu et al. 2024), PatchTST (Nie
et al. 2023), TimeXer (Wang et al. 2024b), Samformer (Il-
bert et al. 2024), ModernTCN (Luo and Wang 2024b), and
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1.5 Sequence reconstruction and decode
• Inverse transform to reconstruct the sequence;
• 3-layer CNN with GELU activation as decoder. 

These are denoted by Ex 2RL⇥↵d and Ey 2RL⇥(1�↵)d.
They are derived using learnable weight matrices Wx 2
RC⇥↵d and Wy 2R1⇥(1�↵)d, as in Ex =XWx, where d

is the embedding dimension and ↵2 [0,1] a hyperparameter
that controls the projected dimensionality of X and y in the
final embedding.1 By concatenating along the feature dimen-
sion, we obtain the final embedding E=[Ex,Ey]2RL⇥d.

3.2 Learnable wavelet transform
We then transform the time series embedding into the wavelet
space that contains both time and frequency information, to
capture both fine-grained details and overall trends across
various temporal resolutions (Mallat 1989; Daubechies 1990).
Specifically, after obtaining the input time series embedding
E, we first define a set of K learnable wavelet transforma-
tions (also referred to as atoms), with the k-th atom held in a
matrix Mk 2Rd⇥L derived by

Mk=exp
�
�w↵t

2
�
⇥cos

�
w�t+w�t

2
�
, (1)

where t2RL is a row vector capturing normalised time
steps with ti = i/(L�1) for i=0, . . . ,L�1, and w↵, w� ,
and w� 2Rd are learnable weight vectors that control the
shape of the wavelet, each initialised randomly from a nor-
mal distribution. In particular, w↵ controls the width of the
Gaussian envelope, and w� , w� respectively determine the
linear or quadratic frequency modulation of the generated
cosine waveforms. This formulation enables the atoms to
adapt to localised time-frequency structures in the data. The
time series embedding E2RL⇥d is then transformed into
the wavelet space by projecting it onto each of the wavelet
atoms Mk 2Rd⇥L using Pk=E�M

>
k

, where Pk 2RL⇥d

denotes the embedding’s projection for the k-th atom, and
� is element-wise multiplication. The transformed wavelet
across all K atoms is denoted by P2RK⇥L⇥d. The afore-
mentioned steps help to preserve temporal structure while
decomposing the input into multi-resolution time-frequency
components using adaptive wavelet transforms that can cap-
ture both short- and long-term patterns in the data.

3.3 Multivariable Coherence Attention (MVCA)
In MTS forecasting, input variables can be both auto-
correlated (to their own past values) and cross-correlated
(to each other). To improve learning from these correlations,
we propose MVCA, a module that supplements the standard
attention. MVCA can capture inter- and intra-variable depen-
dencies within the frequency domain using spectral density
coherence. Its premise is that variables with a higher spec-
tral coherence should contribute more to the attention output.
MVCA can be used in place of any naı̈ve attention module
used in a forecasting method.

Given the obtained input embedding matrix in wavelet
space P2RK⇥L⇥d, where L and d are the time and variable
dimension, K is the number of wavelets after transformation,

1We make sure that both products ↵d and (1�↵)d2N to avoid
dimension mismatch caused by rounding. For ↵=0, the forecasting
is based on the historical values of the target variable only, collapsing
to an autoregressive setting. For ↵=1, forecasting depends entirely
on the exogenous variables.

we first linearly project it to query, key and value embeddings,
denoted as Q, K, and V2RK⇥L⇥d, using weight matrices
Wq, Wk, and Wv 2Rd⇥d respectively, as in Q=PWq.
We then consider the embeddings from different wavelet
transformations (indexed by k) as separate attention heads.
Specifically, for each attention head, we obtain the sub-tensor
of Q, K, and V, denoted as Qh, Kh, and Vh 2RL⇥d, as
the query, key, and value embeddings. Therefore, each head
captures a distinct subspace of the original embedding, where
subspaces correspond to different wavelet transformations
of the input. Including a multi-head structure enables the
model to learn diverse dependencies in parallel (Vaswani
et al. 2017).

We then apply a Fast Fourier Transform (FFT) along
the variable dimension (Dudgeon and Mersereau 1984) of
each transformer head to transfer the query and key embed-
dings to the frequency domain, i.e. Qf =FFT(Qh) and
Kf =FFT(Kh), with both Qf and Kf 2CL⇥`, where
`= bd

2c+1. Each frequency bin in the transformed data
(Qf , Kf ) contains information from all original inputs to
the FFT (Lee-Thorp et al. 2022), capturing both fine-grained
(high-frequency) and global (low-frequency) patterns. The
cross-spectral density Pqk 2 CL⇥` and power-spectral densi-
ties Pqq , Pkk 2 RL⇥` are obtained as follows:

Pqk=Qf �K
⇤
f
, Pqq =Qf �Q

⇤
f
, Pkk=Kf �K

⇤
f
, (2)

where ‘⇤’ denotes the complex conjugate. We average along
the second dimension to obtain Pqk 2CL, Pqq, and Pkk 2
RL (see also Appendix B). The normalised spectral coher-
ence Cqk 2RL is then computed using

Cqk= |Pqk|2/
�
Pqq ·Pkk+✏

�
, (3)

where ✏=10�6 mitigates division by 0. Cqk captures the lin-
ear dependency between sequences across frequency bands.
Therefore, the coherence here assigns higher importance to
the time steps where the query and key hold more similar
averaged values across multiple frequencies.

Following the common design of attention layers (Vaswani
et al. 2017), we scale, normalise, and regularise Cqk, i.e.
Ah=Dropout(Softmax(Cqk/

p
d)). The attention weights

Ah 2RL of each head are first broadcast along the fea-
ture dimension to form A2RL⇥d, which is then multiplied
with the value representations Vh (element-wise) to produce
head-specific outputs, Oh 2RL⇥d =A�Vh. We concate-
nate these outputs across all heads to obtain Or 2RK⇥L⇥d.
We then use a 2-layer perceptron (MLP, d-dimensional lay-
ers) with Gaussian Error Linear Unit (GELU) activation to
further capture nonlinearities. This is connected to a residual
layer to form the output Om2RK⇥L⇥d=Or+MLP(Or).
We then multiply Om with a weight matrix Wout 2Rd⇥d to
obtain the output of MVCA, O2RK⇥L⇥d=OmWout.

3.4 Koopman-guided spectrum evolvement
Motivated by Koopman operator theory (Mezić 2005; Rowley
et al. 2009; Avila and Mezić 2020), which offers a framework
for modelling nonlinear dynamics, we introduce a layer to
capture the temporal evolution of time-frequency patterns in
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for modelling nonlinear dynamics, we introduce a layer to
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that controls the projected dimensionality of X and y in the
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sion, we obtain the final embedding E=[Ex,Ey]2RL⇥d.

3.2 Learnable wavelet transform
We then transform the time series embedding into the wavelet
space that contains both time and frequency information, to
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Specifically, after obtaining the input time series embedding
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and w� 2Rd are learnable weight vectors that control the
shape of the wavelet, each initialised randomly from a nor-
mal distribution. In particular, w↵ controls the width of the
Gaussian envelope, and w� , w� respectively determine the
linear or quadratic frequency modulation of the generated
cosine waveforms. This formulation enables the atoms to
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time series embedding E2RL⇥d is then transformed into
the wavelet space by projecting it onto each of the wavelet
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denotes the embedding’s projection for the k-th atom, and
� is element-wise multiplication. The transformed wavelet
across all K atoms is denoted by P2RK⇥L⇥d. The afore-
mentioned steps help to preserve temporal structure while
decomposing the input into multi-resolution time-frequency
components using adaptive wavelet transforms that can cap-
ture both short- and long-term patterns in the data.

3.3 Multivariable Coherence Attention (MVCA)
In MTS forecasting, input variables can be both auto-
correlated (to their own past values) and cross-correlated
(to each other). To improve learning from these correlations,
we propose MVCA, a module that supplements the standard
attention. MVCA can capture inter- and intra-variable depen-
dencies within the frequency domain using spectral density
coherence. Its premise is that variables with a higher spec-
tral coherence should contribute more to the attention output.
MVCA can be used in place of any naı̈ve attention module
used in a forecasting method.

Given the obtained input embedding matrix in wavelet
space P2RK⇥L⇥d, where L and d are the time and variable
dimension, K is the number of wavelets after transformation,
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